Skip to main content
placeholder image

Smart Fog Based Workflow for Traffic Control Networks

Journal Article


Download full-text (Open Access)

Abstract


  • In this paper, we propose a novel traffic control architecture which is based on fog computing paradigm and reinforcement leaning technologies. We firstly provide an overview of this framework and detail the components and workflows designed to relieve traffic congestion. These workflows, which are connecting traffic lights, vehicles, Fog nodes and traffic cloud, aim to generate traffic light control flow and communication flow for each intersection to avoid a traffic jam. In order to make the whole city’s traffic highly efficient, the fog computing paradigm and a distributed reinforcement learning algorithm is designed to overcome communication bandwidth limitation and local optimal traffic control flow, respectively. We also demonstrate that our framework outperforms traditional systems and provides high practicability in future research for building the intelligent transportation system.

Authors


  •   Wu, Qiang (external author)
  •   Shen, Jun
  •   Yong, Binbin (external author)
  •   Wu, Jianqing (external author)
  •   Li, Fucun (external author)
  •   Wang, Jingqiang (external author)
  •   Zhou, Qingguo (external author)

Publication Date


  • 2019

Citation


  • Wu, Q., Shen, J., Yong, B., Wu, J., Li, F., Wang, J. & Zhou, Q. (2019). Smart Fog Based Workflow for Traffic Control Networks. Future Generation Computer Systems: the international journal of grid computing: theory, methods and applications, 97 825-835.

Scopus Eid


  • 2-s2.0-85063531039

Ro Full-text Url


  • https://ro.uow.edu.au/cgi/viewcontent.cgi?article=3509&context=eispapers1

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers1/2500

Number Of Pages


  • 10

Start Page


  • 825

End Page


  • 835

Volume


  • 97

Place Of Publication


  • Netherlands

Abstract


  • In this paper, we propose a novel traffic control architecture which is based on fog computing paradigm and reinforcement leaning technologies. We firstly provide an overview of this framework and detail the components and workflows designed to relieve traffic congestion. These workflows, which are connecting traffic lights, vehicles, Fog nodes and traffic cloud, aim to generate traffic light control flow and communication flow for each intersection to avoid a traffic jam. In order to make the whole city’s traffic highly efficient, the fog computing paradigm and a distributed reinforcement learning algorithm is designed to overcome communication bandwidth limitation and local optimal traffic control flow, respectively. We also demonstrate that our framework outperforms traditional systems and provides high practicability in future research for building the intelligent transportation system.

Authors


  •   Wu, Qiang (external author)
  •   Shen, Jun
  •   Yong, Binbin (external author)
  •   Wu, Jianqing (external author)
  •   Li, Fucun (external author)
  •   Wang, Jingqiang (external author)
  •   Zhou, Qingguo (external author)

Publication Date


  • 2019

Citation


  • Wu, Q., Shen, J., Yong, B., Wu, J., Li, F., Wang, J. & Zhou, Q. (2019). Smart Fog Based Workflow for Traffic Control Networks. Future Generation Computer Systems: the international journal of grid computing: theory, methods and applications, 97 825-835.

Scopus Eid


  • 2-s2.0-85063531039

Ro Full-text Url


  • https://ro.uow.edu.au/cgi/viewcontent.cgi?article=3509&context=eispapers1

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers1/2500

Number Of Pages


  • 10

Start Page


  • 825

End Page


  • 835

Volume


  • 97

Place Of Publication


  • Netherlands