Skip to main content
placeholder image

Principles and Experimentations of Self-organizing Embedded Agents Allowing Learning from Demonstration in Ambient Robotic

Journal Article


Download full-text (Open Access)

Abstract


  • Ambient systems are populated by many heterogeneous devices to provide adequate services to its users. The adaptation of an ambient system to the specific needs of its users is a challenging task. Because human-system interaction has to be as natural as possible, we propose an approach based on Learning from Demonstration (LfD). However, using LfD in ambient systems needs adaptivity of the learning technique. We present ALEX, a multi-agent system able to dynamically learn and reuse contexts from demonstrations performed by a tutor. Results of experiments performed on both a real and a virtual robot show interesting properties of our technology for ambient applications.

Authors


  •   Verstaevel, Nicolas
  •   Regis, Christine (external author)
  •   Gleizes, Marie-Pierre (external author)
  •   Robert, Fabrice (external author)

Publication Date


  • 2015

Geographic Focus


Citation


  • Verstaevel, N., Regis, C., Gleizes, M. & Robert, F. (2015). Principles and Experimentations of Self-organizing Embedded Agents Allowing Learning from Demonstration in Ambient Robotic. Procedia Computer Science, 52 194-201.

Scopus Eid


  • 2-s2.0-84939161188

Ro Full-text Url


  • https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1268&context=smartpapers

Ro Metadata Url


  • http://ro.uow.edu.au/smartpapers/241

Number Of Pages


  • 7

Start Page


  • 194

End Page


  • 201

Volume


  • 52

Place Of Publication


  • Netherlands

Abstract


  • Ambient systems are populated by many heterogeneous devices to provide adequate services to its users. The adaptation of an ambient system to the specific needs of its users is a challenging task. Because human-system interaction has to be as natural as possible, we propose an approach based on Learning from Demonstration (LfD). However, using LfD in ambient systems needs adaptivity of the learning technique. We present ALEX, a multi-agent system able to dynamically learn and reuse contexts from demonstrations performed by a tutor. Results of experiments performed on both a real and a virtual robot show interesting properties of our technology for ambient applications.

Authors


  •   Verstaevel, Nicolas
  •   Regis, Christine (external author)
  •   Gleizes, Marie-Pierre (external author)
  •   Robert, Fabrice (external author)

Publication Date


  • 2015

Geographic Focus


Citation


  • Verstaevel, N., Regis, C., Gleizes, M. & Robert, F. (2015). Principles and Experimentations of Self-organizing Embedded Agents Allowing Learning from Demonstration in Ambient Robotic. Procedia Computer Science, 52 194-201.

Scopus Eid


  • 2-s2.0-84939161188

Ro Full-text Url


  • https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1268&context=smartpapers

Ro Metadata Url


  • http://ro.uow.edu.au/smartpapers/241

Number Of Pages


  • 7

Start Page


  • 194

End Page


  • 201

Volume


  • 52

Place Of Publication


  • Netherlands