Skip to main content
placeholder image

The Convergence of Cochlear Implantation with Induced Pluripotent Stem Cell Therapy

Journal Article


Abstract


  • According to 2010 estimates from The National Institute on Deafness and other Communication Disorders, approximately 17% (36 million) American adults have reported some degree of hearing loss. Currently, the only clinical treatment available for those with severe-to-profound hearing loss is a cochlear implant, which is designed to electrically stimulate the auditory nerve in the absence of hair cells. Whilst the cochlear implant has been revolutionary in terms of providing hearing to the severe-to-profoundly deaf, there are variations in cochlear implant performance which may be related to the degree of degeneration of auditory neurons following hearing loss. Hence, numerous experimental studies have focused on enhancing the efficacy of cochlear implants by using neurotrophins to preserve the auditory neurons, and more recently, attempting to replace these dying cells with new neurons derived from stem cells. As a result, several groups are now investigating the potential for both embryonic and adult stem cells to replace the degenerating sensory elements in the deaf cochlea. Recent advances in our knowledge of stem cells and the development of induced pluripotency by Takahashi and Yamanaka in 2006, have opened a new realm of science focused on the use of induced pluripotent stem (iPS) cells for therapeutic purposes. This review will provide a broad overview of the potential benefits and challenges of using iPS cells in combination with a cochlear implant for the treatment of hearing loss, including differentiation of iPS cells into an auditory neural lineage and clinically relevant transplantation approaches.

Authors


  •   Gunewardene, Niliksha (external author)
  •   Dottori, Mirella
  •   Nayagam, Bryony A. (external author)

Publication Date


  • 2012

Citation


  • Gunewardene, N., Dottori, M. & Nayagam, B. A. (2012). The Convergence of Cochlear Implantation with Induced Pluripotent Stem Cell Therapy. Stem Cell Reviews and Reports, 8 (3), 741-754.

Scopus Eid


  • 2-s2.0-84865574313

Ro Metadata Url


  • http://ro.uow.edu.au/ihmri/1182

Has Global Citation Frequency


Number Of Pages


  • 13

Start Page


  • 741

End Page


  • 754

Volume


  • 8

Issue


  • 3

Place Of Publication


  • Germany

Abstract


  • According to 2010 estimates from The National Institute on Deafness and other Communication Disorders, approximately 17% (36 million) American adults have reported some degree of hearing loss. Currently, the only clinical treatment available for those with severe-to-profound hearing loss is a cochlear implant, which is designed to electrically stimulate the auditory nerve in the absence of hair cells. Whilst the cochlear implant has been revolutionary in terms of providing hearing to the severe-to-profoundly deaf, there are variations in cochlear implant performance which may be related to the degree of degeneration of auditory neurons following hearing loss. Hence, numerous experimental studies have focused on enhancing the efficacy of cochlear implants by using neurotrophins to preserve the auditory neurons, and more recently, attempting to replace these dying cells with new neurons derived from stem cells. As a result, several groups are now investigating the potential for both embryonic and adult stem cells to replace the degenerating sensory elements in the deaf cochlea. Recent advances in our knowledge of stem cells and the development of induced pluripotency by Takahashi and Yamanaka in 2006, have opened a new realm of science focused on the use of induced pluripotent stem (iPS) cells for therapeutic purposes. This review will provide a broad overview of the potential benefits and challenges of using iPS cells in combination with a cochlear implant for the treatment of hearing loss, including differentiation of iPS cells into an auditory neural lineage and clinically relevant transplantation approaches.

Authors


  •   Gunewardene, Niliksha (external author)
  •   Dottori, Mirella
  •   Nayagam, Bryony A. (external author)

Publication Date


  • 2012

Citation


  • Gunewardene, N., Dottori, M. & Nayagam, B. A. (2012). The Convergence of Cochlear Implantation with Induced Pluripotent Stem Cell Therapy. Stem Cell Reviews and Reports, 8 (3), 741-754.

Scopus Eid


  • 2-s2.0-84865574313

Ro Metadata Url


  • http://ro.uow.edu.au/ihmri/1182

Has Global Citation Frequency


Number Of Pages


  • 13

Start Page


  • 741

End Page


  • 754

Volume


  • 8

Issue


  • 3

Place Of Publication


  • Germany