Skip to main content
placeholder image

Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity

Journal Article


Download full-text (Open Access)

Abstract


  • This study compares the effectiveness of seven redox-mediating compounds namely, 1-hydrozybenzotriazole (HBT), N-hydroxyphthalimide (HPI), 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO), violuric acid (VA), syringaldehyde (SA), vanillin (VA), and 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), which follow distinct oxidation pathways, for the degradation of trace organic contaminants (TrOCs). These redox-mediators were investigated for improved degradation of four TrOCs showing resistance to degradation by crude laccase from the white-rot fungus Pleurotus ostreatus. ABTS and VA achieved the highest degradation of the phenolic compounds (i.e., oxybenzone and pentachlorophenol), whereas the non-phenolic compounds (i.e., naproxen and atrazine) were best removed using VA or HBT. This implies that the non-phenolic compounds are more effectively removed by the radical species generated by the NeOH type mediators (i.e., VA and HBT), while removal of the phenolic compounds may depend more on the stability and the redox potential of the radicals generated from the mediator, irrespective of the type. Notably, enzyme stability was greatly affected by the NeOH type mediators but it was compensated by their rapid degradation capacity. Overall, VA and HBT (NeOH type) appear to be the best mediators for enhanced degradation of the selected compounds without causing significant toxicity in the effluent.

Authors


  •   Ashe, Bradley (external author)
  •   Nguyen, Luong (external author)
  •   Hai, Faisal I.
  •   Lee, Duu-Jong (external author)
  •   Van De Merwe, Jason P. (external author)
  •   Leusch, Frederic (external author)
  •   Price, William E.
  •   Nghiem, Long D. (external author)

Publication Date


  • 2016

Citation


  • Ashe, B., Nguyen, L. N., Hai, F. I., Lee, D., Van De Merwe, J. P., Leusch, F. D. L., Price, W. E. & Nghiem, L. D. (2016). Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity. International Biodeterioration and Biodegradation, 113 169-176.

Scopus Eid


  • 2-s2.0-84975126994

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1271&context=eispapers1

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers1/270

Number Of Pages


  • 7

Start Page


  • 169

End Page


  • 176

Volume


  • 113

Place Of Publication


  • United Kingdom

Abstract


  • This study compares the effectiveness of seven redox-mediating compounds namely, 1-hydrozybenzotriazole (HBT), N-hydroxyphthalimide (HPI), 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO), violuric acid (VA), syringaldehyde (SA), vanillin (VA), and 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), which follow distinct oxidation pathways, for the degradation of trace organic contaminants (TrOCs). These redox-mediators were investigated for improved degradation of four TrOCs showing resistance to degradation by crude laccase from the white-rot fungus Pleurotus ostreatus. ABTS and VA achieved the highest degradation of the phenolic compounds (i.e., oxybenzone and pentachlorophenol), whereas the non-phenolic compounds (i.e., naproxen and atrazine) were best removed using VA or HBT. This implies that the non-phenolic compounds are more effectively removed by the radical species generated by the NeOH type mediators (i.e., VA and HBT), while removal of the phenolic compounds may depend more on the stability and the redox potential of the radicals generated from the mediator, irrespective of the type. Notably, enzyme stability was greatly affected by the NeOH type mediators but it was compensated by their rapid degradation capacity. Overall, VA and HBT (NeOH type) appear to be the best mediators for enhanced degradation of the selected compounds without causing significant toxicity in the effluent.

Authors


  •   Ashe, Bradley (external author)
  •   Nguyen, Luong (external author)
  •   Hai, Faisal I.
  •   Lee, Duu-Jong (external author)
  •   Van De Merwe, Jason P. (external author)
  •   Leusch, Frederic (external author)
  •   Price, William E.
  •   Nghiem, Long D. (external author)

Publication Date


  • 2016

Citation


  • Ashe, B., Nguyen, L. N., Hai, F. I., Lee, D., Van De Merwe, J. P., Leusch, F. D. L., Price, W. E. & Nghiem, L. D. (2016). Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity. International Biodeterioration and Biodegradation, 113 169-176.

Scopus Eid


  • 2-s2.0-84975126994

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1271&context=eispapers1

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers1/270

Number Of Pages


  • 7

Start Page


  • 169

End Page


  • 176

Volume


  • 113

Place Of Publication


  • United Kingdom