Skip to main content
placeholder image

Using data mining to predict success in a weight loss trial

Journal Article


Download full-text (Open Access)

Abstract


  • Background: Traditional methods for predicting weight loss success use regression approaches, which make the assumption that the relationships between the independent and dependent (or logit of the dependent) variable are linear. The aim of the present study was to investigate the relationship between common demographic and early weight loss variables to predict weight loss success at 12 months without making this assumption.

    Methods: Data mining methods (decision trees, generalised additive models and multivariate adaptive regression splines), in addition to logistic regression, were employed to predict: (i) weight loss success (defined as ≥5%) at the end of a 12-month dietary intervention using demographic variables [body mass index (BMI), sex and age]; percentage weight loss at 1 month; and (iii) the difference between actual and predicted weight loss using an energy balance model. The methods were compared by assessing model parsimony and the area under the curve (AUC).

    Results: The decision tree provided the most clinically useful model and had a good accuracy (AUC 0.720 95% confidence interval = 0.600-0.840). Percentage weight loss at 1 month (≥0.75%) was the strongest predictor for successful weight loss. Within those individuals losing ≥0.75%, individuals with a BMI (≥27 kg m-2) were more likely to be successful than those with a BMI between 25 and 27 kg m-2.

    Conclusions: Data mining methods can provide a more accurate way of assessing relationships when conventional assumptions are not met. In the present study, a decision tree provided the most parsimonious model. Given that early weight loss cannot be predicted before randomisation, incorporating this information into a post randomisation trial design may give better weight loss results.

Publication Date


  • 2017

Citation


  • Batterham, M., Tapsell, L., Charlton, K., O'Shea, J. & Thorne, R. (2017). Using data mining to predict success in a weight loss trial. Journal of Human Nutrition and Dietetics, 30 (4), 471-478.

Scopus Eid


  • 2-s2.0-85012294483

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=5627&context=smhpapers

Ro Metadata Url


  • http://ro.uow.edu.au/smhpapers/4602

Has Global Citation Frequency


Number Of Pages


  • 7

Start Page


  • 471

End Page


  • 478

Volume


  • 30

Issue


  • 4

Place Of Publication


  • United Kingdom

Abstract


  • Background: Traditional methods for predicting weight loss success use regression approaches, which make the assumption that the relationships between the independent and dependent (or logit of the dependent) variable are linear. The aim of the present study was to investigate the relationship between common demographic and early weight loss variables to predict weight loss success at 12 months without making this assumption.

    Methods: Data mining methods (decision trees, generalised additive models and multivariate adaptive regression splines), in addition to logistic regression, were employed to predict: (i) weight loss success (defined as ≥5%) at the end of a 12-month dietary intervention using demographic variables [body mass index (BMI), sex and age]; percentage weight loss at 1 month; and (iii) the difference between actual and predicted weight loss using an energy balance model. The methods were compared by assessing model parsimony and the area under the curve (AUC).

    Results: The decision tree provided the most clinically useful model and had a good accuracy (AUC 0.720 95% confidence interval = 0.600-0.840). Percentage weight loss at 1 month (≥0.75%) was the strongest predictor for successful weight loss. Within those individuals losing ≥0.75%, individuals with a BMI (≥27 kg m-2) were more likely to be successful than those with a BMI between 25 and 27 kg m-2.

    Conclusions: Data mining methods can provide a more accurate way of assessing relationships when conventional assumptions are not met. In the present study, a decision tree provided the most parsimonious model. Given that early weight loss cannot be predicted before randomisation, incorporating this information into a post randomisation trial design may give better weight loss results.

Publication Date


  • 2017

Citation


  • Batterham, M., Tapsell, L., Charlton, K., O'Shea, J. & Thorne, R. (2017). Using data mining to predict success in a weight loss trial. Journal of Human Nutrition and Dietetics, 30 (4), 471-478.

Scopus Eid


  • 2-s2.0-85012294483

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=5627&context=smhpapers

Ro Metadata Url


  • http://ro.uow.edu.au/smhpapers/4602

Has Global Citation Frequency


Number Of Pages


  • 7

Start Page


  • 471

End Page


  • 478

Volume


  • 30

Issue


  • 4

Place Of Publication


  • United Kingdom