Skip to main content
placeholder image

Mechanisms of influenza viral membrane fusion

Journal Article


Download full-text (Open Access)

Abstract


  • Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion.

Authors


  •   Blijleven, Jelle S. (external author)
  •   Boonstra, Sander (external author)
  •   Onck, Patrick (external author)
  •   van der Giessen, Erik (external author)
  •   van Oijen, Antoine M.

Publication Date


  • 2016

Citation


  • Blijleven, J. S., Boonstra, S., Onck, P. R., van der Giessen, E. & van Oijen, A. M. (2016). Mechanisms of influenza viral membrane fusion. Seminars in Cell and Developmental Biology, 60 78-88.

Scopus Eid


  • 2-s2.0-85002966553

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=5416&context=smhpapers

Ro Metadata Url


  • http://ro.uow.edu.au/smhpapers/4392

Number Of Pages


  • 10

Start Page


  • 78

End Page


  • 88

Volume


  • 60

Abstract


  • Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion.

Authors


  •   Blijleven, Jelle S. (external author)
  •   Boonstra, Sander (external author)
  •   Onck, Patrick (external author)
  •   van der Giessen, Erik (external author)
  •   van Oijen, Antoine M.

Publication Date


  • 2016

Citation


  • Blijleven, J. S., Boonstra, S., Onck, P. R., van der Giessen, E. & van Oijen, A. M. (2016). Mechanisms of influenza viral membrane fusion. Seminars in Cell and Developmental Biology, 60 78-88.

Scopus Eid


  • 2-s2.0-85002966553

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=5416&context=smhpapers

Ro Metadata Url


  • http://ro.uow.edu.au/smhpapers/4392

Number Of Pages


  • 10

Start Page


  • 78

End Page


  • 88

Volume


  • 60