Skip to main content
placeholder image

Study of the effect of ceramic TaO5 nanoparticle distribution on cellular dose enhancement in a kilovoltage photon field

Journal Article


Abstract


  • The application of nanoparticles (NPs) in radiotherapy is an increasingly attractive technique to improve clinical outcomes. The internalisation of NPs within the tumour cells enables an increased radiation dose to critical cellular structures. The purpose of this study is to investigate, by means of Geant4 simulations, the dose enhancement within a cell population irradiated with a 150 kVp photon field in the presence of a varying concentration of tantalum pentoxide (Ta2O5) NP aggregates, experimentally observed to form shells within tumour cells. This scenario is compared to the more traditionally simulated homogeneous solution of NP material in water with the same weight fraction of Ta2O5, as well as to a cell population without NPs present. The production of secondary electrons is enhanced by increased photoelectric effect interactions within the high-Z material and this is examined in terms of their kinetic energy spectra and linear energy transfer (LET) with various NP distributions compared to water. Our results indicate that the shell formation scenario limits the dose enhancement at 150 kVp. The underlying mechanism for this limit is discussed.

Publication Date


  • 2016

Citation


  • McKinnon, S., Engels, E., Tehei, M., Konstantinov, K., Corde, S., Oktaria, S., Incerti, S., Lerch, M., Rosenfeld, A. & Guatelli, S. (2016). Study of the effect of ceramic Ta

Scopus Eid


  • 2-s2.0-84992735581

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/6307

Number Of Pages


  • 8

Start Page


  • 1216

End Page


  • 1224

Volume


  • 32

Issue


  • 10

Abstract


  • The application of nanoparticles (NPs) in radiotherapy is an increasingly attractive technique to improve clinical outcomes. The internalisation of NPs within the tumour cells enables an increased radiation dose to critical cellular structures. The purpose of this study is to investigate, by means of Geant4 simulations, the dose enhancement within a cell population irradiated with a 150 kVp photon field in the presence of a varying concentration of tantalum pentoxide (Ta2O5) NP aggregates, experimentally observed to form shells within tumour cells. This scenario is compared to the more traditionally simulated homogeneous solution of NP material in water with the same weight fraction of Ta2O5, as well as to a cell population without NPs present. The production of secondary electrons is enhanced by increased photoelectric effect interactions within the high-Z material and this is examined in terms of their kinetic energy spectra and linear energy transfer (LET) with various NP distributions compared to water. Our results indicate that the shell formation scenario limits the dose enhancement at 150 kVp. The underlying mechanism for this limit is discussed.

Publication Date


  • 2016

Citation


  • McKinnon, S., Engels, E., Tehei, M., Konstantinov, K., Corde, S., Oktaria, S., Incerti, S., Lerch, M., Rosenfeld, A. & Guatelli, S. (2016). Study of the effect of ceramic Ta

Scopus Eid


  • 2-s2.0-84992735581

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/6307

Number Of Pages


  • 8

Start Page


  • 1216

End Page


  • 1224

Volume


  • 32

Issue


  • 10