Skip to main content
placeholder image

Some topics in convolution-based spatial modeling

Journal Article


Abstract


  • Over the last decade, convolution-based models for spatial data have increased in popularity as a result of their flexibility in modeling spatial dependence and their ability to accommodate large datasets. The modeling flexibility is due to the framework’s moving-average construction that guarantees a valid (i.e., non-negative definite) spatial covariance function. This constructive approach to spatial modeling has been used (1) to provide an alternative to the standard classes of parametric variogram/covariance functions commonly used in geostatistics; (2) to specify Gaussian-process models with nonstationary and anisotropic covariance functions; and (3) to create non-Gaussian classes of models for spatial data. Beyond the flexible nature of convolution-based models, computational challenges associated with modeling large datasets can be alleviated in part through dimension reduction, where the dimension of the convolved process is less than the dimension of the spatial data. In this paper, we review various types of convolution-based models for spatial data and point out directions for future research.

Publication Date


  • 2007

Citation


  • Calder, C. A. & Cressie, N. (2007). Some topics in convolution-based spatial modeling. Bulletin of the International Statistical Institute, 62 132-139. Lisbon, Portugal Proceedings of the 56th Session of the International Statistical Institute

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/5974

Number Of Pages


  • 7

Start Page


  • 132

End Page


  • 139

Volume


  • 62

Place Of Publication


  • https://www.isi-web.org/index.php/publications/proceedings

Abstract


  • Over the last decade, convolution-based models for spatial data have increased in popularity as a result of their flexibility in modeling spatial dependence and their ability to accommodate large datasets. The modeling flexibility is due to the framework’s moving-average construction that guarantees a valid (i.e., non-negative definite) spatial covariance function. This constructive approach to spatial modeling has been used (1) to provide an alternative to the standard classes of parametric variogram/covariance functions commonly used in geostatistics; (2) to specify Gaussian-process models with nonstationary and anisotropic covariance functions; and (3) to create non-Gaussian classes of models for spatial data. Beyond the flexible nature of convolution-based models, computational challenges associated with modeling large datasets can be alleviated in part through dimension reduction, where the dimension of the convolved process is less than the dimension of the spatial data. In this paper, we review various types of convolution-based models for spatial data and point out directions for future research.

Publication Date


  • 2007

Citation


  • Calder, C. A. & Cressie, N. (2007). Some topics in convolution-based spatial modeling. Bulletin of the International Statistical Institute, 62 132-139. Lisbon, Portugal Proceedings of the 56th Session of the International Statistical Institute

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/5974

Number Of Pages


  • 7

Start Page


  • 132

End Page


  • 139

Volume


  • 62

Place Of Publication


  • https://www.isi-web.org/index.php/publications/proceedings