Skip to main content
placeholder image

Hydrostatic compression behavior and high-pressure stabilized β-phase in γ-based titanium aluminide intermetallics

Journal Article


Download full-text (Open Access)

Abstract


  • Titanium aluminides find application in modern light-weight, high-temperature turbines, such as aircraft engines, but suffer from poor plasticity during manufacturing and processing. Huge forging presses enable materials processing in the 10-GPa range, and hence, it is necessary to investigate the phase diagrams of candidate materials under these extreme conditions. Here, we report on an in situ synchrotron X-ray diffraction study in a large-volume press of a modern (α2 + γ) two-phase material, Ti-45Al-7.5Nb-0.25C, under pressures up to 9.6 GPa and temperatures up to 1686 K. At room temperature, the volume response to pressure is accommodated by the transformation γ → α2, rather than volumetric strain, expressed by the apparently high bulk moduli of both constituent phases. Crystallographic aspects, specifically lattice strain and atomic order, are discussed in detail. It is interesting to note that this transformation takes place despite an increase in atomic volume, which is due to the high ordering energy of γ. Upon heating under high pressure, both the eutectoid and γ-solvus transition temperatures are elevated, and a third, cubic β-phase is stabilized above 1350 K. Earlier research has shown that this β-phase is very ductile during plastic deformation, essential in near-conventional forging processes. Here, we were able to identify an ideal processing window for near-conventional forging, while the presence of the detrimental β-phase is not present under operating conditions. Novel processing routes can be defined from these findings.

Authors


  •   Liss, Klaus-Dieter
  •   Funakoshi, Ken-Ichi (external author)
  •   Dippenaar, Rian J.
  •   Higo, Yuji (external author)
  •   Shiro, Ayumi (external author)
  •   Reid, Mark H. (external author)
  •   Suzuki, Hiroshi (external author)
  •   Shobu, Takahisa (external author)
  •   Akita, Koichi (external author)

Publication Date


  • 2016

Published In


Citation


  • Liss, K., Funakoshi, K., Dippenaar, R. Johannes., Higo, Y., Shiro, A., Reid, M., Suzuki, H., Shobu, T. & Akita, K. (2016). Hydrostatic compression behavior and high-pressure stabilized β-phase in γ-based titanium aluminide intermetallics. Metals, 6 (7), 165-1-165-22.

Scopus Eid


  • 2-s2.0-84979072579

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=6930&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/5901

Has Global Citation Frequency


Start Page


  • 165-1

End Page


  • 165-22

Volume


  • 6

Issue


  • 7

Place Of Publication


  • Switzerland

Abstract


  • Titanium aluminides find application in modern light-weight, high-temperature turbines, such as aircraft engines, but suffer from poor plasticity during manufacturing and processing. Huge forging presses enable materials processing in the 10-GPa range, and hence, it is necessary to investigate the phase diagrams of candidate materials under these extreme conditions. Here, we report on an in situ synchrotron X-ray diffraction study in a large-volume press of a modern (α2 + γ) two-phase material, Ti-45Al-7.5Nb-0.25C, under pressures up to 9.6 GPa and temperatures up to 1686 K. At room temperature, the volume response to pressure is accommodated by the transformation γ → α2, rather than volumetric strain, expressed by the apparently high bulk moduli of both constituent phases. Crystallographic aspects, specifically lattice strain and atomic order, are discussed in detail. It is interesting to note that this transformation takes place despite an increase in atomic volume, which is due to the high ordering energy of γ. Upon heating under high pressure, both the eutectoid and γ-solvus transition temperatures are elevated, and a third, cubic β-phase is stabilized above 1350 K. Earlier research has shown that this β-phase is very ductile during plastic deformation, essential in near-conventional forging processes. Here, we were able to identify an ideal processing window for near-conventional forging, while the presence of the detrimental β-phase is not present under operating conditions. Novel processing routes can be defined from these findings.

Authors


  •   Liss, Klaus-Dieter
  •   Funakoshi, Ken-Ichi (external author)
  •   Dippenaar, Rian J.
  •   Higo, Yuji (external author)
  •   Shiro, Ayumi (external author)
  •   Reid, Mark H. (external author)
  •   Suzuki, Hiroshi (external author)
  •   Shobu, Takahisa (external author)
  •   Akita, Koichi (external author)

Publication Date


  • 2016

Published In


Citation


  • Liss, K., Funakoshi, K., Dippenaar, R. Johannes., Higo, Y., Shiro, A., Reid, M., Suzuki, H., Shobu, T. & Akita, K. (2016). Hydrostatic compression behavior and high-pressure stabilized β-phase in γ-based titanium aluminide intermetallics. Metals, 6 (7), 165-1-165-22.

Scopus Eid


  • 2-s2.0-84979072579

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=6930&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/5901

Has Global Citation Frequency


Start Page


  • 165-1

End Page


  • 165-22

Volume


  • 6

Issue


  • 7

Place Of Publication


  • Switzerland