Skip to main content
placeholder image

Iterates of holomorphic self-maps on pseudoconvex domains of finite and infinite type in Cn

Journal Article


Download full-text (Open Access)

Abstract


  • Using the lower bounds on the Kobayashi metric established by the first author, we prove a Wolff-Denjoy-type theorem for a very large class of pseudoconvex domains in Cn. This class includes many pseudoconvex domains of finite type and infinite type.

Publication Date


  • 2016

Citation


  • Khanh, T. & Thu, N. Van. (2016). Iterates of holomorphic self-maps on pseudoconvex domains of finite and infinite type in Cn. Proceedings of the American Mathematical Society, 144 (12), 5197-5206.

Scopus Eid


  • 2-s2.0-84992316045

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=6813&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/5785

Number Of Pages


  • 9

Start Page


  • 5197

End Page


  • 5206

Volume


  • 144

Issue


  • 12

Abstract


  • Using the lower bounds on the Kobayashi metric established by the first author, we prove a Wolff-Denjoy-type theorem for a very large class of pseudoconvex domains in Cn. This class includes many pseudoconvex domains of finite type and infinite type.

Publication Date


  • 2016

Citation


  • Khanh, T. & Thu, N. Van. (2016). Iterates of holomorphic self-maps on pseudoconvex domains of finite and infinite type in Cn. Proceedings of the American Mathematical Society, 144 (12), 5197-5206.

Scopus Eid


  • 2-s2.0-84992316045

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=6813&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/5785

Number Of Pages


  • 9

Start Page


  • 5197

End Page


  • 5206

Volume


  • 144

Issue


  • 12