Abstract
-
Purpose
Multifractal applications to resting state functional MRI (rs-fMRI) time series for diagnosing Alzheimer's disease (AD) are still limited. We aim to address two issues: (I) if and what multifractal features are sufficiently discriminative to detect AD from the healthy; (II) if AD classification could be further improved by combining multifractal features with traditional features in this field.
Methods
Rs-fMRI data of 25 AD patients and 38 normal controls were analyzed. A set of multifractal features were systematically investigated. Traditional features in monofractal, linear, and network-based categories were also extracted for comparison and combination. Both support vector machines and multiple kernel learning (MKL) were used to perform classification with individual and combined features.
Results
We identified a multifractal feature, inline image, which has the strongest discriminative power among all the features in our study. Moreover, we found that the classification accuracy could be significantly improved from 69% (by inline image only) to up to 76%, when nonsparse MKL is used to combine inline image with the monofractal feature, Hurst. Finally, we showed that incorporating other multifractal features, inline image, inline image and inline image, could also improve traditional-feature-based AD classification.
Conclusion
Our work demonstrated the potential usefulness of multifractal analysis for AD research, especially when combining with the traditional rs-fMRI features. It contributes to distinguishing AD from NC subjects.