Skip to main content
placeholder image

Binder-free and carbon-free 3D porous air electrode for Li-O2 batteries with high efficiency, high capacity, and long life

Journal Article


Download full-text (Open Access)

Abstract


  • Pt-Gd alloy polycrystalline thin film is deposited on 3D nickel foam by pulsed laser deposition method serving as a whole binder/carbon-free air electrode, showing great catalytic activity enhancement as an efficient bifunctional catalyst for the oxygen reduction and evolution reactions in lithium oxygen batteries. The porous structure can facilitate rapid O2 and electrolyte diffusion, as well as forming a continuous conductive network throughout the whole energy conversion process. It shows a favorable cycle performance in the full discharge/charge model, owing to the high catalytic activity of the Pt-Gd alloy composite and 3D porous nickel foam structure. Specially, excellent cycling performance under capacity limited mode is also demonstrated, in which the terminal discharge voltage is higher than 2.5 V and the terminal charge voltage is lower than 3.7 V after 100 cycles at a current density of 0.1 mA cm−2. Therefore, this electrocatalyst is a promising bifunctional electrocatalyst for lithium oxygen batteries and this depositing high-efficient electrocatalyst on porous substrate with polycrystalline thin film by pulsed laser deposition is also a promising technique in the future lithium oxygen batteries research.

Publication Date


  • 2016

Published In


Citation


  • Luo, W., Gao, X., Shi, D., Chou, S., Wang, J. & Liu, H. (2016). Binder-free and carbon-free 3D porous air electrode for Li-O2 batteries with high efficiency, high capacity, and long life. Small, 12 (22), 3031-3038.

Scopus Eid


  • 2-s2.0-84964666620

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=3065&context=aiimpapers

Ro Metadata Url


  • http://ro.uow.edu.au/aiimpapers/2063

Number Of Pages


  • 7

Start Page


  • 3031

End Page


  • 3038

Volume


  • 12

Issue


  • 22

Abstract


  • Pt-Gd alloy polycrystalline thin film is deposited on 3D nickel foam by pulsed laser deposition method serving as a whole binder/carbon-free air electrode, showing great catalytic activity enhancement as an efficient bifunctional catalyst for the oxygen reduction and evolution reactions in lithium oxygen batteries. The porous structure can facilitate rapid O2 and electrolyte diffusion, as well as forming a continuous conductive network throughout the whole energy conversion process. It shows a favorable cycle performance in the full discharge/charge model, owing to the high catalytic activity of the Pt-Gd alloy composite and 3D porous nickel foam structure. Specially, excellent cycling performance under capacity limited mode is also demonstrated, in which the terminal discharge voltage is higher than 2.5 V and the terminal charge voltage is lower than 3.7 V after 100 cycles at a current density of 0.1 mA cm−2. Therefore, this electrocatalyst is a promising bifunctional electrocatalyst for lithium oxygen batteries and this depositing high-efficient electrocatalyst on porous substrate with polycrystalline thin film by pulsed laser deposition is also a promising technique in the future lithium oxygen batteries research.

Publication Date


  • 2016

Published In


Citation


  • Luo, W., Gao, X., Shi, D., Chou, S., Wang, J. & Liu, H. (2016). Binder-free and carbon-free 3D porous air electrode for Li-O2 batteries with high efficiency, high capacity, and long life. Small, 12 (22), 3031-3038.

Scopus Eid


  • 2-s2.0-84964666620

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=3065&context=aiimpapers

Ro Metadata Url


  • http://ro.uow.edu.au/aiimpapers/2063

Number Of Pages


  • 7

Start Page


  • 3031

End Page


  • 3038

Volume


  • 12

Issue


  • 22