Skip to main content
placeholder image

Walking the tightrope: proteostasis and neurodegenerative disease

Journal Article


Download full-text (Open Access)

Abstract


  • A characteristic of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), is the aggregation of specific proteins into protein inclusions and/or plaques in degenerating brains. While much of the aggregated protein consists of disease specific proteins, such as amyloid-β, α-synuclein, or superoxide dismutase1 (SOD1), many other proteins are known to aggregate in these disorders. Although the role of protein aggregates in the pathogenesis of neurodegenerative diseases remains unknown, the ubiquitous association of misfolded and aggregated proteins indicates that significant dysfunction in protein homeostasis (proteostasis) occurs in these diseases. Proteostasis is the concept that the integrity of the proteome is in fine balance and requires proteins in a specific conformation, concentration, and location to be functional. In this review, we discuss the role of specific mechanisms, both inside and outside cells, which maintain proteostasis, including molecular chaperones, protein degradation pathways, and the active formation of inclusions, in neurodegenerative diseases associated with protein aggregation.

    A characteristic of many neurodegenerative diseases is the aggregation of specific proteins, which alone provides strong evidence that protein homeostasis is disrupted in these disease states. Proteostasis is the maintenance of the proteome in the correct conformation, concentration, and location by functional pathways such as molecular chaperones and protein degradation machinery. Here, we discuss the potential roles of quality control pathways, both inside and outside cells, in the loss of proteostasis during aging and disease.

Publication Date


  • 2016

Citation


  • Yerbury, J. J., Ooi, L., Dillin, A., Saunders, D. N., Danny, D. M., Beart, P. M., Cashman, N. R., Wilson, M. R. & Ecroyd, H. (2016). Walking the tightrope: proteostasis and neurodegenerative disease. Journal of Neurochemistry, 137 (4), 489-505.

Scopus Eid


  • 2-s2.0-84960348747

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=4879&context=smhpapers

Ro Metadata Url


  • http://ro.uow.edu.au/smhpapers/3856

Has Global Citation Frequency


Number Of Pages


  • 16

Start Page


  • 489

End Page


  • 505

Volume


  • 137

Issue


  • 4

Place Of Publication


  • United Kingdom

Abstract


  • A characteristic of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), is the aggregation of specific proteins into protein inclusions and/or plaques in degenerating brains. While much of the aggregated protein consists of disease specific proteins, such as amyloid-β, α-synuclein, or superoxide dismutase1 (SOD1), many other proteins are known to aggregate in these disorders. Although the role of protein aggregates in the pathogenesis of neurodegenerative diseases remains unknown, the ubiquitous association of misfolded and aggregated proteins indicates that significant dysfunction in protein homeostasis (proteostasis) occurs in these diseases. Proteostasis is the concept that the integrity of the proteome is in fine balance and requires proteins in a specific conformation, concentration, and location to be functional. In this review, we discuss the role of specific mechanisms, both inside and outside cells, which maintain proteostasis, including molecular chaperones, protein degradation pathways, and the active formation of inclusions, in neurodegenerative diseases associated with protein aggregation.

    A characteristic of many neurodegenerative diseases is the aggregation of specific proteins, which alone provides strong evidence that protein homeostasis is disrupted in these disease states. Proteostasis is the maintenance of the proteome in the correct conformation, concentration, and location by functional pathways such as molecular chaperones and protein degradation machinery. Here, we discuss the potential roles of quality control pathways, both inside and outside cells, in the loss of proteostasis during aging and disease.

Publication Date


  • 2016

Citation


  • Yerbury, J. J., Ooi, L., Dillin, A., Saunders, D. N., Danny, D. M., Beart, P. M., Cashman, N. R., Wilson, M. R. & Ecroyd, H. (2016). Walking the tightrope: proteostasis and neurodegenerative disease. Journal of Neurochemistry, 137 (4), 489-505.

Scopus Eid


  • 2-s2.0-84960348747

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=4879&context=smhpapers

Ro Metadata Url


  • http://ro.uow.edu.au/smhpapers/3856

Has Global Citation Frequency


Number Of Pages


  • 16

Start Page


  • 489

End Page


  • 505

Volume


  • 137

Issue


  • 4

Place Of Publication


  • United Kingdom