Skip to main content
placeholder image

mGluR2/3 agonist LY379268 rescues NMDA and GABAA receptor level deficits induced in a two-hit mouse model of schizophrenia

Journal Article


Download full-text (Open Access)

Abstract


  • Rationale

    An imbalance of excitatory and inhibitory neurotransmission underlies the glutamate hypothesis of schizophrenia. Agonists of group II metabotropic glutamate receptors, mGluR2/3, have been proposed as novel therapeutic agents to correct this imbalance. However, the influence of mGluR2/3 activity on excitatory and inhibitory neurotransmitter receptors has not been explored.

    Objectives

    We aimed to investigate the ability of a novel mGluR2/3 agonist, LY379268, to modulate the availability of the excitatory N-methyl-d-aspartate receptor (NMDA-R) and the inhibitory gamma-aminobutyrate-A receptor (GABAA-R), in a two-hit mouse model of schizophrenia.

    Methods

    Wild type (WT) and heterozygous neuregulin 1 transmembrane domain mutant mice (NRG1 HET) were treated daily with phencyclidine (10 mg/kg ip) or saline for 14 days. After a 14-day washout, an acute dose of the mGluR2/3 agonist LY379268 (3 mg/kg), olanzapine (antipsychotic drug comparison, 1.5 mg/kg), or saline was administered. NMDA-R and GABAA-R binding densities were examined by receptor autoradiography in several schizophrenia-relevant brain regions.

    Results

    In both WT and NRG1 HET mice, phencyclidine treatment significantly reduced NMDA-R and GABAA-R binding density in the prefrontal cortex, hippocampus, and nucleus accumbens. Acute treatment with LY379268 restored NMDA-R and GABAA-R levels in the two-hit mouse model comparable to olanzapine.

    Conclusions

    We demonstrate that the mGluR2/3 agonist LY379268 restores excitatory and inhibitory deficits with similar efficiency as olanzapine in our two-hit schizophrenia mouse model. This study significantly contributes to our understanding of the mechanisms underlying the therapeutic effects of LY379268 and supports the use of agents aimed at mGluR2/3.

  • Rationale

    An imbalance of excitatory and inhibitory neurotransmission underlies the glutamate hypothesis of schizophrenia. Agonists of group II metabotropic glutamate receptors, mGluR2/3, have been proposed as novel therapeutic agents to correct this imbalance. However, the influence of mGluR2/3 activity on excitatory and inhibitory neurotransmitter receptors has not been explored.

    Objectives

    We aimed to investigate the ability of a novel mGluR2/3 agonist, LY379268, to modulate the availability of the excitatory N-methyl-d-aspartate receptor (NMDA-R) and the inhibitory gamma-aminobutyrate-A receptor (GABAA-R), in a two-hit mouse model of schizophrenia.

    Methods

    Wild type (WT) and heterozygous neuregulin 1 transmembrane domain mutant mice (NRG1 HET) were treated daily with phencyclidine (10 mg/kg ip) or saline for 14 days. After a 14-day washout, an acute dose of the mGluR2/3 agonist LY379268 (3 mg/kg), olanzapine (antipsychotic drug comparison, 1.5 mg/kg), or saline was administered. NMDA-R and GABAA-R binding densities were examined by receptor autoradiography in several schizophrenia-relevant brain regions.

    Results

    In both WT and NRG1 HET mice, phencyclidine treatment significantly reduced NMDA-R and GABAA-R binding density in the prefrontal cortex, hippocampus, and nucleus accumbens. Acute treatment with LY379268 restored NMDA-R and GABAA-R levels in the two-hit mouse model comparable to olanzapine.

    Conclusions

    We demonstrate that the mGluR2/3 agonist LY379268 restores excitatory and inhibitory deficits with similar efficiency as olanzapine in our two-hit schizophrenia mouse model. This study significantly contributes to our understanding of the mechanisms underlying the therapeutic effects of LY379268 and supports the use of agents aimed at mGluR2/3.

Publication Date


  • 2016

Citation


  • Engel, M., Snikeris, P., Matosin, N., Newell, K. Anne., Huang, X. & Frank, E. (2016). mGluR2/3 agonist LY379268 rescues NMDA and GABAA receptor level deficits induced in a two-hit mouse model of schizophrenia. Psychopharmacology, 233 (8), 1349-1359.

Scopus Eid


  • 2-s2.0-84957668357

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1880&context=ihmri

Ro Metadata Url


  • http://ro.uow.edu.au/ihmri/856

Has Global Citation Frequency


Number Of Pages


  • 10
  • 10

Start Page


  • 1349

End Page


  • 1359

Volume


  • 233

Issue


  • 8

Place Of Publication


  • Germany

Abstract


  • Rationale

    An imbalance of excitatory and inhibitory neurotransmission underlies the glutamate hypothesis of schizophrenia. Agonists of group II metabotropic glutamate receptors, mGluR2/3, have been proposed as novel therapeutic agents to correct this imbalance. However, the influence of mGluR2/3 activity on excitatory and inhibitory neurotransmitter receptors has not been explored.

    Objectives

    We aimed to investigate the ability of a novel mGluR2/3 agonist, LY379268, to modulate the availability of the excitatory N-methyl-d-aspartate receptor (NMDA-R) and the inhibitory gamma-aminobutyrate-A receptor (GABAA-R), in a two-hit mouse model of schizophrenia.

    Methods

    Wild type (WT) and heterozygous neuregulin 1 transmembrane domain mutant mice (NRG1 HET) were treated daily with phencyclidine (10 mg/kg ip) or saline for 14 days. After a 14-day washout, an acute dose of the mGluR2/3 agonist LY379268 (3 mg/kg), olanzapine (antipsychotic drug comparison, 1.5 mg/kg), or saline was administered. NMDA-R and GABAA-R binding densities were examined by receptor autoradiography in several schizophrenia-relevant brain regions.

    Results

    In both WT and NRG1 HET mice, phencyclidine treatment significantly reduced NMDA-R and GABAA-R binding density in the prefrontal cortex, hippocampus, and nucleus accumbens. Acute treatment with LY379268 restored NMDA-R and GABAA-R levels in the two-hit mouse model comparable to olanzapine.

    Conclusions

    We demonstrate that the mGluR2/3 agonist LY379268 restores excitatory and inhibitory deficits with similar efficiency as olanzapine in our two-hit schizophrenia mouse model. This study significantly contributes to our understanding of the mechanisms underlying the therapeutic effects of LY379268 and supports the use of agents aimed at mGluR2/3.

  • Rationale

    An imbalance of excitatory and inhibitory neurotransmission underlies the glutamate hypothesis of schizophrenia. Agonists of group II metabotropic glutamate receptors, mGluR2/3, have been proposed as novel therapeutic agents to correct this imbalance. However, the influence of mGluR2/3 activity on excitatory and inhibitory neurotransmitter receptors has not been explored.

    Objectives

    We aimed to investigate the ability of a novel mGluR2/3 agonist, LY379268, to modulate the availability of the excitatory N-methyl-d-aspartate receptor (NMDA-R) and the inhibitory gamma-aminobutyrate-A receptor (GABAA-R), in a two-hit mouse model of schizophrenia.

    Methods

    Wild type (WT) and heterozygous neuregulin 1 transmembrane domain mutant mice (NRG1 HET) were treated daily with phencyclidine (10 mg/kg ip) or saline for 14 days. After a 14-day washout, an acute dose of the mGluR2/3 agonist LY379268 (3 mg/kg), olanzapine (antipsychotic drug comparison, 1.5 mg/kg), or saline was administered. NMDA-R and GABAA-R binding densities were examined by receptor autoradiography in several schizophrenia-relevant brain regions.

    Results

    In both WT and NRG1 HET mice, phencyclidine treatment significantly reduced NMDA-R and GABAA-R binding density in the prefrontal cortex, hippocampus, and nucleus accumbens. Acute treatment with LY379268 restored NMDA-R and GABAA-R levels in the two-hit mouse model comparable to olanzapine.

    Conclusions

    We demonstrate that the mGluR2/3 agonist LY379268 restores excitatory and inhibitory deficits with similar efficiency as olanzapine in our two-hit schizophrenia mouse model. This study significantly contributes to our understanding of the mechanisms underlying the therapeutic effects of LY379268 and supports the use of agents aimed at mGluR2/3.

Publication Date


  • 2016

Citation


  • Engel, M., Snikeris, P., Matosin, N., Newell, K. Anne., Huang, X. & Frank, E. (2016). mGluR2/3 agonist LY379268 rescues NMDA and GABAA receptor level deficits induced in a two-hit mouse model of schizophrenia. Psychopharmacology, 233 (8), 1349-1359.

Scopus Eid


  • 2-s2.0-84957668357

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1880&context=ihmri

Ro Metadata Url


  • http://ro.uow.edu.au/ihmri/856

Has Global Citation Frequency


Number Of Pages


  • 10
  • 10

Start Page


  • 1349

End Page


  • 1359

Volume


  • 233

Issue


  • 8

Place Of Publication


  • Germany