Skip to main content

Analysis of micro flexible rolling with consideration of material heterogeneity

Journal Article


Download full-text (Open Access)

Abstract


  • This paper establishes a finite element model to numerically study the springback in thickness direction during micro flexible rolling process, in which 3D Voronoi tessellation has been applied to describe grain boundary and generation process of grain in the workpiece. To reflect material heterogeneity, nine kinds of mechanical properties defined by nine types of heterogeneity coefficients are selected and assigned to Voronoi polyhedrons as per the statistical distribution of hardness of grains identified by micro hardness testing. Initial workpiece thicknesses of 100, 250 and 500 μm with reduction changing from 20% to 50% are respectively considered in the numerical simulation of micro flexible rolling process, and the effects of front and back tensions on the average springback have been discussed. With average grain sizes of 1, 10, 50, 100 and 250 μm respectively employed in the workpieces with the aforesaid initial thicknesses, the scatter of springback in thickness direction has been determined, and a model for springback has also been developed based on the simulation results.

UOW Authors


  •   Qu, Feijun (external author)
  •   Jiang, Zhengyi
  •   Lu, Haina (external author)

Publication Date


  • 2016

Citation


  • Qu, F., Jiang, Z. & Lu, H. (2016). Analysis of micro flexible rolling with consideration of material heterogeneity. International Journal of Mechanical Sciences, 105 182-190.

Scopus Eid


  • 2-s2.0-84948845008

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=5866&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/4839

Has Global Citation Frequency


Number Of Pages


  • 8

Start Page


  • 182

End Page


  • 190

Volume


  • 105

Place Of Publication


  • United Kingdom

Abstract


  • This paper establishes a finite element model to numerically study the springback in thickness direction during micro flexible rolling process, in which 3D Voronoi tessellation has been applied to describe grain boundary and generation process of grain in the workpiece. To reflect material heterogeneity, nine kinds of mechanical properties defined by nine types of heterogeneity coefficients are selected and assigned to Voronoi polyhedrons as per the statistical distribution of hardness of grains identified by micro hardness testing. Initial workpiece thicknesses of 100, 250 and 500 μm with reduction changing from 20% to 50% are respectively considered in the numerical simulation of micro flexible rolling process, and the effects of front and back tensions on the average springback have been discussed. With average grain sizes of 1, 10, 50, 100 and 250 μm respectively employed in the workpieces with the aforesaid initial thicknesses, the scatter of springback in thickness direction has been determined, and a model for springback has also been developed based on the simulation results.

UOW Authors


  •   Qu, Feijun (external author)
  •   Jiang, Zhengyi
  •   Lu, Haina (external author)

Publication Date


  • 2016

Citation


  • Qu, F., Jiang, Z. & Lu, H. (2016). Analysis of micro flexible rolling with consideration of material heterogeneity. International Journal of Mechanical Sciences, 105 182-190.

Scopus Eid


  • 2-s2.0-84948845008

Ro Full-text Url


  • http://ro.uow.edu.au/cgi/viewcontent.cgi?article=5866&context=eispapers

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/4839

Has Global Citation Frequency


Number Of Pages


  • 8

Start Page


  • 182

End Page


  • 190

Volume


  • 105

Place Of Publication


  • United Kingdom