Skip to main content
placeholder image

A nonlinear least squares approach to time of death estimation via body cooling

Journal Article


Abstract


  • The problem of time of death (TOD) estimation by body cooling is revisited by proposing a nonlinear least squares approach that takes as input a series of temperature readings only. Using a reformulation of the Marshall-Hoare double exponential formula and a technique for reducing the dimension of the state space, an error function that depends on the two cooling rates is constructed, with the aim of minimizing this function. Standard nonlinear optimization methods that are used to minimize the bivariate error function require an initial guess for these unknown rates. Hence, a systematic procedure based on the given temperature data is also proposed to determine an initial estimate for the rates. Then, an explicit formula for the TOD is given. Results of numerical simulations using both theoretical and experimental data are presented, both yielding reasonable estimates. The proposed procedure does not require knowledge of the temperature at death nor the body mass. In fact, the method allows the estimation of the temperature at death once the cooling rates and the TOD have been calculated. The procedure requires at least three temperature readings, although more measured readings could improve the estimates. With the aid of computerized recording and thermocouple detectors, temperature readings spaced 10-15 min apart, for example, can be taken. The formulas can be straightforwardly programmed and installed on a hand-held device for field use.

Publication Date


  • 2016

Citation


  • Rodrigo, M. R. (2016). A nonlinear least squares approach to time of death estimation via body cooling. Journal of Forensic Sciences, 61 (1), 230-233.

Scopus Eid


  • 2-s2.0-84956812348

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/5292

Number Of Pages


  • 3

Start Page


  • 230

End Page


  • 233

Volume


  • 61

Issue


  • 1

Abstract


  • The problem of time of death (TOD) estimation by body cooling is revisited by proposing a nonlinear least squares approach that takes as input a series of temperature readings only. Using a reformulation of the Marshall-Hoare double exponential formula and a technique for reducing the dimension of the state space, an error function that depends on the two cooling rates is constructed, with the aim of minimizing this function. Standard nonlinear optimization methods that are used to minimize the bivariate error function require an initial guess for these unknown rates. Hence, a systematic procedure based on the given temperature data is also proposed to determine an initial estimate for the rates. Then, an explicit formula for the TOD is given. Results of numerical simulations using both theoretical and experimental data are presented, both yielding reasonable estimates. The proposed procedure does not require knowledge of the temperature at death nor the body mass. In fact, the method allows the estimation of the temperature at death once the cooling rates and the TOD have been calculated. The procedure requires at least three temperature readings, although more measured readings could improve the estimates. With the aid of computerized recording and thermocouple detectors, temperature readings spaced 10-15 min apart, for example, can be taken. The formulas can be straightforwardly programmed and installed on a hand-held device for field use.

Publication Date


  • 2016

Citation


  • Rodrigo, M. R. (2016). A nonlinear least squares approach to time of death estimation via body cooling. Journal of Forensic Sciences, 61 (1), 230-233.

Scopus Eid


  • 2-s2.0-84956812348

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/5292

Number Of Pages


  • 3

Start Page


  • 230

End Page


  • 233

Volume


  • 61

Issue


  • 1