Skip to main content

Adsorption of normal-alkanes on Fe(110), FeO(110), and Fe2O3(0001): Influence of iron oxide surfaces

Journal Article


Abstract


  • A comparative analysis of adsorption of six normal-alkanes (CNH2N+2, N = 4, 6, 8, 10, 12, 16) on Fe(110), FeO(110), and Fe2O3(0001) was carried out using classical molecular dynamics (MD) simulation. A realistic model system for adsorbed alkanes was employed using the COMPASS force field (FF), while the appropriate relaxed surfaces and an effective interfacial potential were obtained from ab initio calculations. The results show that butane molecules orient randomly on Fe(110) and Fe2O3(0001) surfaces, but they preferentially orient in the (010) direction on FeO(110) at low temperature. Additionally, alkanes adsorb physically on Fe(110), FeO(110), and Fe2O3(0001), in the following decreasing order Fe(110) > FeO(110) > Fe2O3(0001). The adsorption energies per saturated carbon site decrease with an increase of molecular chain length, and this propensity is similar for different surface potentials. In contrast, the saturated carbon density is insensitive to the surface potentials and shows an increasing trend for short alkane chains, but it remains steady for longer chains.

Publication Date


  • 2015

Citation


  • Ta, T. D., Tieu, A. Kiet., Zhu, H. & Kosasih, B. (2015). Adsorption of normal-alkanes on Fe(110), FeO(110), and Fe2O3(0001): Influence of iron oxide surfaces. The Journal of Physical Chemistry C: Energy Conversion and Storage, Optical and Electronic Devices, Interfaces, Nanomaterials, and Hard Matter, 119 (23), 12999-13010.

Scopus Eid


  • 2-s2.0-84935919080

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/4265

Has Global Citation Frequency


Number Of Pages


  • 11

Start Page


  • 12999

End Page


  • 13010

Volume


  • 119

Issue


  • 23

Place Of Publication


  • United States

Abstract


  • A comparative analysis of adsorption of six normal-alkanes (CNH2N+2, N = 4, 6, 8, 10, 12, 16) on Fe(110), FeO(110), and Fe2O3(0001) was carried out using classical molecular dynamics (MD) simulation. A realistic model system for adsorbed alkanes was employed using the COMPASS force field (FF), while the appropriate relaxed surfaces and an effective interfacial potential were obtained from ab initio calculations. The results show that butane molecules orient randomly on Fe(110) and Fe2O3(0001) surfaces, but they preferentially orient in the (010) direction on FeO(110) at low temperature. Additionally, alkanes adsorb physically on Fe(110), FeO(110), and Fe2O3(0001), in the following decreasing order Fe(110) > FeO(110) > Fe2O3(0001). The adsorption energies per saturated carbon site decrease with an increase of molecular chain length, and this propensity is similar for different surface potentials. In contrast, the saturated carbon density is insensitive to the surface potentials and shows an increasing trend for short alkane chains, but it remains steady for longer chains.

Publication Date


  • 2015

Citation


  • Ta, T. D., Tieu, A. Kiet., Zhu, H. & Kosasih, B. (2015). Adsorption of normal-alkanes on Fe(110), FeO(110), and Fe2O3(0001): Influence of iron oxide surfaces. The Journal of Physical Chemistry C: Energy Conversion and Storage, Optical and Electronic Devices, Interfaces, Nanomaterials, and Hard Matter, 119 (23), 12999-13010.

Scopus Eid


  • 2-s2.0-84935919080

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/4265

Has Global Citation Frequency


Number Of Pages


  • 11

Start Page


  • 12999

End Page


  • 13010

Volume


  • 119

Issue


  • 23

Place Of Publication


  • United States