Skip to main content

Subcritical parametric dynamics of microbeams

Journal Article


Abstract


  • The aim of this paper is to analyse the size-dependent nonlinear parametric dynamics of microbeams; the source of parametric excitation is a time-dependent longitudinal excitation load. Taking into account small-size effects, via the modified couple stress theory, the expressions for the potential and kinetic energies of the system are developed. A multi-degree-of-freedom discretised system is obtained by transforming the continuous model into a reduced-order one via the Galerkin scheme. For the system in the subcritical mean axial load regime, the parametric response is obtained via two different numerical techniques; first one is based on a continuation technique and the second one is via a direct time-integration method. A stability analysis is also conducted via the Floquet theory. Results for the nonlinear parametric response are illustrated in the form of parametric frequency-response diagrams, parametric force-response curves, time histories, phase-plane portraits, fast Fourier transforms (FFTs), and PoincarĂ© maps. The effect of taking into account the length-scale parameter on the parametric response of the system is also highlighted.

Authors


  •   Ghayesh, Mergen H. (external author)
  •   Farokhi, Hamed (external author)
  •   Alici, Gursel

Publication Date


  • 2015

Citation


  • Ghayesh, M. H., Farokhi, H. & Alici, G. (2015). Subcritical parametric dynamics of microbeams. International Journal of Engineering Science, 95 36-48.

Scopus Eid


  • 2-s2.0-84936806405

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/4264

Has Global Citation Frequency


Number Of Pages


  • 12

Start Page


  • 36

End Page


  • 48

Volume


  • 95

Place Of Publication


  • United States

Abstract


  • The aim of this paper is to analyse the size-dependent nonlinear parametric dynamics of microbeams; the source of parametric excitation is a time-dependent longitudinal excitation load. Taking into account small-size effects, via the modified couple stress theory, the expressions for the potential and kinetic energies of the system are developed. A multi-degree-of-freedom discretised system is obtained by transforming the continuous model into a reduced-order one via the Galerkin scheme. For the system in the subcritical mean axial load regime, the parametric response is obtained via two different numerical techniques; first one is based on a continuation technique and the second one is via a direct time-integration method. A stability analysis is also conducted via the Floquet theory. Results for the nonlinear parametric response are illustrated in the form of parametric frequency-response diagrams, parametric force-response curves, time histories, phase-plane portraits, fast Fourier transforms (FFTs), and PoincarĂ© maps. The effect of taking into account the length-scale parameter on the parametric response of the system is also highlighted.

Authors


  •   Ghayesh, Mergen H. (external author)
  •   Farokhi, Hamed (external author)
  •   Alici, Gursel

Publication Date


  • 2015

Citation


  • Ghayesh, M. H., Farokhi, H. & Alici, G. (2015). Subcritical parametric dynamics of microbeams. International Journal of Engineering Science, 95 36-48.

Scopus Eid


  • 2-s2.0-84936806405

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/4264

Has Global Citation Frequency


Number Of Pages


  • 12

Start Page


  • 36

End Page


  • 48

Volume


  • 95

Place Of Publication


  • United States