Skip to main content
placeholder image

Weld HAZ properties in modern high strength niobium pipeline steels

Conference Paper


Abstract


  • A microalloy addition of Ti is currently the option of choice to minimise austenite grain coarsening in the weld HAZ through the grain boundary pinning action of TiN precipitation. The thermal stability of the TiN precipitates provides control of boundary migration compared to other microalloy additions but steelmaking controls required to produce the optimum precipitate size distribution can be difficult to consistently achieve. Increased additions of Nb in modern high temperature processed (HTP) pipeline steels have demonstrated increased control of HAZ microstructures with improved fracture toughness. The present paper details the microstructure property relationship of two pipe steel grades with different alloy designs. Evaluation of the critical CGHAZ was achieved by simulation techniques, calibrated using real weld thermal cycles, to quantify the influence of alloy design and specifically the role of Nb in weld zone properties. The results reveal that the fracture toughness of the simulated CGHAZ in the HTP steel is superior to that of a lower Nb, Ti microalloyed pipeline steel grade. Toughness was related to the subtle difference in the bainitic HAZ microstructure and most importantly a difference in austenite grain size. Further work is required to elucidate precisely the mechanisms involved.

UOW Authors


  •   Barbaro, Frank (external author)
  •   Kuzmikova, Lenka (external author)
  •   Zhu, Zhixiong (external author)
  •   Li, Hui Jun.

Publication Date


  • 2014

Citation


  • Barbaro, F., Kuzmikova, L., Zhu, Z. & Li, H. (2014). Weld HAZ properties in modern high strength niobium pipeline steels. Energy Materials 2014, Conference Proceedings (pp. 657-664). United States: Wiley.

Scopus Eid


  • 2-s2.0-84934325097

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/4258

Start Page


  • 657

End Page


  • 664

Place Of Publication


  • United States

Abstract


  • A microalloy addition of Ti is currently the option of choice to minimise austenite grain coarsening in the weld HAZ through the grain boundary pinning action of TiN precipitation. The thermal stability of the TiN precipitates provides control of boundary migration compared to other microalloy additions but steelmaking controls required to produce the optimum precipitate size distribution can be difficult to consistently achieve. Increased additions of Nb in modern high temperature processed (HTP) pipeline steels have demonstrated increased control of HAZ microstructures with improved fracture toughness. The present paper details the microstructure property relationship of two pipe steel grades with different alloy designs. Evaluation of the critical CGHAZ was achieved by simulation techniques, calibrated using real weld thermal cycles, to quantify the influence of alloy design and specifically the role of Nb in weld zone properties. The results reveal that the fracture toughness of the simulated CGHAZ in the HTP steel is superior to that of a lower Nb, Ti microalloyed pipeline steel grade. Toughness was related to the subtle difference in the bainitic HAZ microstructure and most importantly a difference in austenite grain size. Further work is required to elucidate precisely the mechanisms involved.

UOW Authors


  •   Barbaro, Frank (external author)
  •   Kuzmikova, Lenka (external author)
  •   Zhu, Zhixiong (external author)
  •   Li, Hui Jun.

Publication Date


  • 2014

Citation


  • Barbaro, F., Kuzmikova, L., Zhu, Z. & Li, H. (2014). Weld HAZ properties in modern high strength niobium pipeline steels. Energy Materials 2014, Conference Proceedings (pp. 657-664). United States: Wiley.

Scopus Eid


  • 2-s2.0-84934325097

Ro Metadata Url


  • http://ro.uow.edu.au/eispapers/4258

Start Page


  • 657

End Page


  • 664

Place Of Publication


  • United States