Abstract
-
Hollow LiFePO
4 nanoparticles were synthesized via a solvothermal technique, using ammonium tartrate as additive and carbon source, and ethylene glycol/water as solvent. The as-prepared samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning and transmission electron microscopies, and Brunauer-Emmett-Teller specific surface area measurements. The electrochemical properties of the LiFePO4 cathode were examined in coin-type cell configuration and the cathode exhibited excellent rate capability (i.e., discharge capacity of 120.9 mA h g-1 at 10 C) and cycling performance (i.e., >98% of capacity retention rate after 50 cycles). It is believed that the enhanced performance is correlated to the hollow structure, small crystallite and particle sizes, and relatively shorter lattice parameter b.