Skip to main content
placeholder image

Size matters: evolution of body size of species in deep time

Grant


Scheme


  • Discovery Projects

Abstract


  • Global warming is predicted to form 'sick seas' and cause widespread stunted growth of taxa and ecosystem-wide dwarfism. Exactly how this works requires substantiation of both short-term empirical and experimental research as well as evidence from the deep-time fossil record. Using the high-resolution marine fossil record from the Permian-Triassic mass extinction ~252 million years ago, the most severe in the history of animals, this project will investigate how body size of marine species and communities evolved in response to the mass extinction and rapid global warming. It is expected that the project findings will help better understand the links between global warming, anoxia, hypercapnia, euxinia, ocean acidification, and species adaptation and evolution.

Date/time Interval


  • 2015 - 2019

Sponsor Award Id


  • DP150100690

Local Award Id


  • 131145

Scheme


  • Discovery Projects

Abstract


  • Global warming is predicted to form 'sick seas' and cause widespread stunted growth of taxa and ecosystem-wide dwarfism. Exactly how this works requires substantiation of both short-term empirical and experimental research as well as evidence from the deep-time fossil record. Using the high-resolution marine fossil record from the Permian-Triassic mass extinction ~252 million years ago, the most severe in the history of animals, this project will investigate how body size of marine species and communities evolved in response to the mass extinction and rapid global warming. It is expected that the project findings will help better understand the links between global warming, anoxia, hypercapnia, euxinia, ocean acidification, and species adaptation and evolution.

Date/time Interval


  • 2015 - 2019

Sponsor Award Id


  • DP150100690

Local Award Id


  • 131145