This project aims to overcome poor reaction kinetics and the lack of effective anode materials owing to the large size of sodium-ions in high performance sodium-ion batteries. The project will explore a series of functional nanomaterials with unique nanostructures and complex compositions, enabled by metal-organic framework assisted synthetic methods. High performance sodium ion batteries are demonstrating great potential to meet the future demand for large-scale and low-cost stationary energy storage. However, their practical implementation is still hindered by their poor reaction kinetics and the lack of effective anode materials owing to the large size of sodium-ions. The project outcomes will promote the commercialisation of sodium ion batteries and power Australia's sustainable economy in the long run.
This project aims to overcome poor reaction kinetics and the lack of effective anode materials owing to the large size of sodium-ions in high performance sodium-ion batteries. The project will explore a series of functional nanomaterials with unique nanostructures and complex compositions, enabled by metal-organic framework assisted synthetic methods. High performance sodium ion batteries are demonstrating great potential to meet the future demand for large-scale and low-cost stationary energy storage. However, their practical implementation is still hindered by their poor reaction kinetics and the lack of effective anode materials owing to the large size of sodium-ions. The project outcomes will promote the commercialisation of sodium ion batteries and power Australia's sustainable economy in the long run.