placeholder image

Ultrafast magic angle spinning solid-state NMR capability

Grant


Scheme


  • Linkage Infrastructure Equipment & Facilities (LIEF)

Abstract


  • This project aims to extend an existing nuclear magnetic resonance (NMR) spectrometer for structural investigations of proteins in the solid state. Many proteins, such as amyloids and flexible proteins, cannot be studied by X-ray crystallography, solution NMR spectroscopy or cryoelectron microscopy, because they cannot be crystallised or are not sufficiently soluble, or are structurally too heterogeneous. This project will extend the capability of an existing 800 MHz NMR spectrometer to solid-state NMR. By offering ultrafast magic angle spinning speeds, the system aims to afford greatly enhanced sensitivity and multidimensional NMR spectra of protein systems not previously amenable to structural analysis by NMR spectroscopy or other techniques. This will have important applications in biotechnology and biomedicine.

Sponsor Award Id


  • LE180100026

Local Award Id


  • 124973

Scheme


  • Linkage Infrastructure Equipment & Facilities (LIEF)

Abstract


  • This project aims to extend an existing nuclear magnetic resonance (NMR) spectrometer for structural investigations of proteins in the solid state. Many proteins, such as amyloids and flexible proteins, cannot be studied by X-ray crystallography, solution NMR spectroscopy or cryoelectron microscopy, because they cannot be crystallised or are not sufficiently soluble, or are structurally too heterogeneous. This project will extend the capability of an existing 800 MHz NMR spectrometer to solid-state NMR. By offering ultrafast magic angle spinning speeds, the system aims to afford greatly enhanced sensitivity and multidimensional NMR spectra of protein systems not previously amenable to structural analysis by NMR spectroscopy or other techniques. This will have important applications in biotechnology and biomedicine.

Sponsor Award Id


  • LE180100026

Local Award Id


  • 124973