The project aims to develop novel structured phosphorus (Sn/P)-based composites as anode electrodes for sodium ion storage, which have high initial coulombic efficiency (charge capacity), high capacity and stable cycle life. Approaches of modifying surface structure will improve initial coulombic efficiency of Sn/P-based composites, and strategies to stabilise solid electrolyte interphase (SEI) film will obtain long-cycle stability. The success of this project will greatly accelerate the commercialisation of sodium ion batteries and support the utilisation of renewable energy in Australia.
The project aims to develop novel structured phosphorus (Sn/P)-based composites as anode electrodes for sodium ion storage, which have high initial coulombic efficiency (charge capacity), high capacity and stable cycle life. Approaches of modifying surface structure will improve initial coulombic efficiency of Sn/P-based composites, and strategies to stabilise solid electrolyte interphase (SEI) film will obtain long-cycle stability. The success of this project will greatly accelerate the commercialisation of sodium ion batteries and support the utilisation of renewable energy in Australia.