This project aims to develop new methods for understanding regularity properties of operator algebras. These play a crucial role in the development of quantum physics, quantum computing and in topological insulators. Operator algebras constitute the mathematical underpinnings of quantum mechanics. This project aims to analyse nuclear dimension and quasidiagonality of operator algebras: two recently developed and exceptionally important regularity properties. This should deliver significant benefits, including an enhanced understanding of operator algebras and strengthened research capacity and standing for Australia.
This project aims to develop new methods for understanding regularity properties of operator algebras. These play a crucial role in the development of quantum physics, quantum computing and in topological insulators. Operator algebras constitute the mathematical underpinnings of quantum mechanics. This project aims to analyse nuclear dimension and quasidiagonality of operator algebras: two recently developed and exceptionally important regularity properties. This should deliver significant benefits, including an enhanced understanding of operator algebras and strengthened research capacity and standing for Australia.