This project seeks major advancements in magnesium diboride (MgB2) superconductor performance through the development of novel techniques for the fabrication of MgB2 wire. Further improvement in MgB2 wire performance holds the key to a number of significant commercial applications, including Magnetic Resonance Imaging, fault current limiters and wind turbines.
This project seeks major advancements in magnesium diboride (MgB2) superconductor performance through the development of novel techniques for the fabrication of MgB2 wire. Further improvement in MgB2 wire performance holds the key to a number of significant commercial applications, including Magnetic Resonance Imaging, fault current limiters and wind turbines.